Publications
Jonas Teuwen
2022
-
Deep MRI reconstruction with radial subsamplingMedical Imaging 2022: Physics of Medical ImagingG. Yiasemis, C. Zhang, C. I. Sánchez, J. Sonke, J. Teuwen, 2022
Abstract
Loading... -
Prediction of Upstaging in Ductal Carcinoma in Situ Based on Mammographic Radiomic FeaturesRadiologyR. Hou, L. J. Grimm, M. A. Mazurowski, J. R. Marks, L. M. King, C. C. Maley, T. Lynch, M. Van Oirsouw, K. Rogers, N. Stone, M. Wallis, J. Teuwen, J. Wesseling, E. S. Hwang, J. Y. Lo, 2022, 303;(1):54-62
Abstract
Loading... -
Exploiting the Dixon Method for a Robust Breast and Fibro-Glandular Tissue Segmentation in Breast MRIDiagnosticsR. Samperna, N. Moriakov, N. Karssemeijer, J. Teuwen, R. M. Mann, 2022, 12;(7):1690
Abstract
Loading... -
Recurrent variational network: A deep learning inverse problem solver applied to the task of accelerated mri reconstructionProceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)G. Yiasemis, J. Sonke, C. Sánchez, J. Teuwen, 2022
Abstract
Loading... -
Federated learning enables big data for rare cancer boundary detection.Nature communicationsS. Pati, U. Baid, B. Edwards, M. Sheller, S. Wang, G. A. Reina, P. Foley, A. Gruzdev, D. Karkada, C. Davatzikos, C. Sako, S. Ghodasara, M. Bilello, S. Mohan, P. Vollmuth, G. Brugnara, C. J. Preetha, F. Sahm, K. Maier-Hein, M. Zenk, M. Bendszus, W. Wick, E. Calabrese, J. Rudie, J. Villanueva-Meyer, S. Cha, M. Ingalhalikar, M. Jadhav, U. Pandey, J. Saini, J. Garrett, M. Larson, R. Jeraj, S. Currie, R. Frood, K. Fatania, R. Y. Huang, K. Chang, C. Balaña, J. Capellades, J. Puig, J. Trenkler, J. Pichler, G. Necker, A. Haunschmidt, S. Meckel, G. Shukla, S. Liem, G. S. Alexander, J. Lombardo, J. D. Palmer, A. E. Flanders, A. P. Dicker, H. I. Sair, C. K. Jones, A. Venkataraman, M. Jiang, T. Y. So, C. Chen, P. A. Heng, Q. Dou, M. Kozubek, F. Lux, J. Michálek, P. Matula, M. Keřkovský, T. Kopřivová, M. Dostál, V. Vybíhal, M. A. Vogelbaum, J. R. Mitchell, J. Farinhas, J. A. Maldjian, C. G. B. Yogananda, M. C. Pinho, D. Reddy, J. Holcomb, B. C. Wagner, B. M. Ellingson, T. F. Cloughesy, C. Raymond, T. Oughourlian, A. Hagiwara, C. Wang, M. To, S. Bhardwaj, C. Chong, M. Agzarian, A. X. Falcão, S. B. Martins, B. C. A. Teixeira, F. Sprenger, D. Menotti, D. R. Lucio, P. Lamontagne, D. Marcus, B. Wiestler, F. Kofler, I. Ezhov, M. Metz, R. Jain, M. Lee, Y. W. Lui, R. Mckinley, J. Slotboom, P. Radojewski, R. Meier, R. Wiest, D. Murcia, E. Fu, R. Haas, J. Thompson, D. R. Ormond, C. Badve, A. E. Sloan, V. Vadmal, K. Waite, R. R. Colen, L. Pei, M. Ak, A. Srinivasan, J. R. Bapuraj, A. Rao, N. Wang, O. Yoshiaki, T. Moritani, S. Turk, J. Lee, S. Prabhudesai, F. Morón, J. Mandel, K. Kamnitsas, B. Glocker, L. V. M. Dixon, M. Williams, P. Zampakis, V. Panagiotopoulos, P. Tsiganos, S. Alexiou, I. Haliassos, E. I. Zacharaki, K. Moustakas, C. Kalogeropoulou, D. M. Kardamakis, Y. S. Choi, S. Lee, J. H. Chang, S. S. Ahn, B. Luo, L. Poisson, N. Wen, P. Tiwari, R. Verma, R. Bareja, I. Yadav, J. Chen, N. Kumar, M. Smits, S. R. Van Der Voort, A. Alafandi, F. Incekara, M. M. J. Wijnenga, G. Kapsas, R. Gahrmann, J. W. Schouten, H. J. Dubbink, A. J. P. E. Vincent, M. J. Van Den Bent, P. J. French, S. Klein, Y. Yuan, S. Sharma, T. Tseng, S. Adabi, S. P. Niclou, O. Keunen, A. Hau, M. Vallières, D. Fortin, M. Lepage, B. Landman, K. Ramadass, K. Xu, S. Chotai, L. B. Chambless, A. Mistry, R. C. Thompson, Y. Gusev, K. Bhuvaneshwar, A. Sayah, C. Bencheqroun, A. Belouali, S. Madhavan, T. C. Booth, A. Chelliah, M. Modat, H. Shuaib, C. Dragos, A. Abayazeed, K. Kolodziej, M. Hill, A. Abbassy, S. Gamal, M. Mekhaimar, M. Qayati, M. Reyes, J. E. Park, J. Yun, H. S. Kim, A. Mahajan, M. Muzi, S. Benson, R. G. H. Beets-Tan, J. Teuwen, A. Herrera-Trujillo, M. Trujillo, W. Escobar, A. Abello, J. Bernal, J. Gómez, J. Choi, S. Baek, Y. Kim, H. Ismael, B. Allen, J. M. Buatti, A. Kotrotsou, H. Li, T. Weiss, M. Weller, A. Bink, B. Pouymayou, H. F. Shaykh, J. Saltz, P. Prasanna, S. Shrestha, K. M. Mani, D. Payne, T. Kurc, E. Pelaez, H. Franco-Maldonado, F. Loayza, S. Quevedo, P. Guevara, E. Torche, C. Mendoza, F. Vera, E. Ríos, E. López, S. A. Velastin, G. Ogbole, M. Soneye, D. Oyekunle, O. Odafe-Oyibotha, B. Osobu, M. Shu'Aibu, A. Dorcas, F. Dako, A. L. Simpson, M. Hamghalam, J. J. Peoples, R. Hu, A. Tran, D. Cutler, F. Y. Moraes, M. A. Boss, J. Gimpel, D. K. Veettil, K. Schmidt, B. Bialecki, S. Marella, C. Price, L. Cimino, C. Apgar, P. Shah, B. Menze, J. S. Barnholtz-Sloan, J. Martin, S. Bakas, 2022, 13;(1):7346
Abstract
Loading... -
WeakSTIL: weak whole-slide image level stromal tumor infiltrating lymphocyte scores are all you needMedical Imaging 2022: Digital and Computational PathologyY. Schirris, M. Engelaer, A. Panteli, H. M. Horlings, E. Gavves, J. Teuwen, 2022
Abstract
Loading... -
Prediction of histological grade and molecular subtypes of invasive breast cancer using mammographic growth rate in screeningEuropean Journal of CancerJ. Peters, N. Moriakov, J. Van Dijck, S. Elias, E. Lips, J. Wesseling, R. Mann, J. Teuwen, M. Caballo, M. Broeders, 2022, 175
Abstract
Loading... -
Auto-Segmentation of Oropharyngeal Cancer Primary Tumors Using Multiparametric MRI-Based Deep LearningInternational Journal of Radiation Oncology*Biology*PhysicsK. Wahid, S. Ahmed, R. He, L. Van Dijk, J. Teuwen, B. Mcdonald, V. Salama, A. Mohamed, T. Salzillo, C. Dede, N. Taku, S. Lai, C. Fuller, M. Naser, 2022, 112;(5):e31
Abstract
Loading...
2021
-
Subpixel object segmentation using wavelets and multi resolution analysisR. Sheombarsing, N. Moriakov, J. Sonke, J. Teuwen, 2021
Abstract
Loading... -
Impact of artificial intelligence support on accuracy and reading time in breast tomosynthesis image interpretation: a multi-reader multi-case studyEuropean RadiologyS. L. Van Winkel, A. Rodríguez-Ruiz, L. Appelman, A. Gubern-Mérida, N. Karssemeijer, J. Teuwen, A. J. T. Wanders, I. Sechopoulos, R. M. Mann, 2021, 31;(11):8682-8691
Abstract
Loading... -
Deep learning model for automatic contouring of cardiovascular substructures on radiotherapy planning CT images: Dosimetric validation and reader study based clinical acceptability testingRadiotherapy and OncologyM. Garrett Fernandes, J. Bussink, B. Stam, R. Wijsman, D. A. Schinagl, R. Monshouwer, J. Teuwen, 2021, 165
Abstract
Loading... -
Diffusion weighted imaging for evaluation of breast lesions: Comparison between high b-value single-shot and routine readout-segmented sequences at 3 TMagnetic Resonance ImagingW. B. Sanderink, J. Teuwen, L. Appelman, L. Moy, L. Heacock, E. Weiland, I. Sechopoulos, R. M. Mann, 2021, 84
Abstract
Loading... -
Evaluation of the Robustness of Learned MR Image Reconstruction to Systematic Deviations Between Training and Test Data for the Models from the fastMRI ChallengeMachine Learning for Medical Image ReconstructionP. M. Johnson, G. Jeong, K. Hammernik, J. Schlemper, C. Qin, J. Duan, D. Rueckert, J. Lee, N. Pezzotti, E. De Weerdt, S. Yousefi, M. S. Elmahdy, J. H. F. Van Gemert, C. Schülke, M. Doneva, T. Nielsen, S. Kastryulin, B. P. F. Lelieveldt, M. J. P. Van Osch, M. Staring, E. Z. Chen, P. Wang, X. Chen, T. Chen, V. M. Patel, S. Sun, H. Shin, Y. Jun, T. Eo, S. Kim, T. Kim, D. Hwang, P. Putzky, D. Karkalousos, J. Teuwen, N. Moriakov, B. Bakker, M. Caan, M. Welling, M. J. Muckley, F. Knoll, 2021
Abstract
Loading... -
Abstract
Loading... -
Automated Assessment of COVID-19 Reporting and Data System and Chest CT Severity Scores in Patients Suspected of Having COVID-19 Using Artificial IntelligenceRadiologyN. Lessmann, C. I. Sánchez, L. Beenen, L. H. Boulogne, M. Brink, E. Calli, J. Charbonnier, T. Dofferhoff, W. M. Van Everdingen, P. K. Gerke, B. Geurts, H. A. Gietema, M. Groeneveld, L. Van Harten, N. Hendrix, W. Hendrix, H. J. Huisman, I. Išgum, C. Jacobs, R. Kluge, M. Kok, J. Krdzalic, B. Lassen-Schmidt, K. Van Leeuwen, J. Meakin, M. Overkamp, T. Van Rees Vellinga, E. M. Van Rikxoort, R. Samperna, C. Schaefer-Prokop, S. Schalekamp, E. T. Scholten, C. Sital, J. L. Stöger, J. Teuwen, K. V. Venkadesh, C. De Vente, M. Vermaat, W. Xie, B. De Wilde, M. Prokop, B. Van Ginneken, 2021, 298;(1):E18-E28
Abstract
Loading... -
Deep learning reconstruction of digital breast tomosynthesis images for accurate breast density and patient-specific radiation dose estimationMedical Image AnalysisJ. Teuwen, N. Moriakov, C. Fedon, M. Caballo, I. Reiser, P. Bakic, E. García, O. Diaz, K. Michielsen, I. Sechopoulos, 2021, 71
Abstract
Loading... -
Comparison of simultaneous multi-slice single-shot DWI to readout-segmented DWI for evaluation of breast lesions at 3T MRIEuropean Journal of RadiologyW. B. Sanderink, J. Teuwen, L. Appelman, L. Moy, L. Heacock, E. Weiland, N. Karssemeijer, P. A. Baltzer, I. Sechopoulos, R. M. Mann, 2021, 138
Abstract
Loading... -
Computer-aided diagnosis of masses in breast computed tomography imaging: deep learning model with combined handcrafted and convolutional radiomic featuresJournal of Medical ImagingM. Caballo, A. M. Hernandez, S. H. Lyu, J. Teuwen, R. M. Mann, B. Van Ginneken, J. M. Boone, I. Sechopoulos, 2021, 8;(02)
Abstract
Loading... -
Oropharyngeal Tumour Segmentation Using Ensemble 3D PET-CT Fusion Networks for the HECKTOR ChallengeHead and Neck Tumor SegmentationC. Rao, S. Pai, I. Hadzic, I. Zhovannik, D. Bontempi, A. Dekker, J. Teuwen, A. Traverso, 2021
Abstract
Loading... -
Results of the 2020 fastMRI Challenge for Machine Learning MR Image ReconstructionIEEE Transactions on Medical ImagingM. J. Muckley, B. Riemenschneider, A. Radmanesh, S. Kim, G. Jeong, J. Ko, Y. Jun, H. Shin, D. Hwang, M. Mostapha, S. Arberet, D. Nickel, Z. Ramzi, P. Ciuciu, J. Starck, J. Teuwen, D. Karkalousos, C. Zhang, A. Sriram, Z. Huang, N. Yakubova, Y. W. Lui, F. Knoll, 2021, 40;(9):2306-2317
Abstract
Loading... -
Automatic breast lesion detection in ultrafast DCE‐MRI using deep learningMedical PhysicsF. Ayatollahi, S. B. Shokouhi, R. M. Mann, J. Teuwen, 2021, 48;(10):5897-5907
Abstract
Loading... -
Sparse-shot learning with exclusive cross-entropy for extremely many localisationsProceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)A. Panteli, J. Teuwen, H. Horlings, E. Gavves, 2021
Abstract
Loading...
2020
-
Deep Learning-based Initialization of Iterative Reconstruction for Breast Tomosynthesis6th International Conference on Image Formation in X-Ray Computed Tomography (CT-meeting)K. Michielsen, N. Moriakov, J. Teuwen, I. Sechopoulos, 2020
Abstract
Loading... -
Convolutional neural networksHandbook of Medical Image Computing and Computer Assisted InterventionJ. Teuwen, N. Moriakov, 2020
Abstract
Loading... -
Machine learning-based classification of viewing behavior using a wide range of statistical oculomotor featuresJournal of VisionT. Kootstra, J. Teuwen, J. Goudsmit, T. Nijboer, M. Dodd, S. Van Der Stigchel, 2020, 20;(9):1
Abstract
Loading... -
Kernel of cyclegan as a principal homogeneous spaceInternational Conference on Learning RepresentationsN. Moriakov, J. Adler, J. Teuwen, 2020
Abstract
Loading...
2019
-
i-RIM applied to the fastMRI challengeP. Putzky, D. Karkalousos, J. Teuwen, N. Moriakov, B. Bakker, M. Caan, M. Welling, 2019
Abstract
Loading... -
Learned SIRT for Cone Beam Computed Tomography ReconstructionR. J. Dilz, L. Schröder, N. Moriakov, J. Sonke, J. Teuwen, 2019
Abstract
Loading... -
Abstract
Loading... -
State-of-the-Art Deep Learning in Cardiovascular Image AnalysisJACC: Cardiovascular ImagingG. Litjens, F. Ciompi, J. M. Wolterink, B. D. De Vos, T. Leiner, J. Teuwen, I. Išgum, 2019, 12;(8):1549-1565
Abstract
Loading... -
Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility studyEuropean RadiologyA. Rodriguez-Ruiz, K. Lång, A. Gubern-Merida, J. Teuwen, M. Broeders, G. Gennaro, P. Clauser, T. H. Helbich, M. Chevalier, T. Mertelmeier, M. G. Wallis, I. Andersson, S. Zackrisson, I. Sechopoulos, R. M. Mann, 2019, 29;(9):4825-4832
Abstract
Loading... -
MemCNN: A Python/PyTorch package for creating memory-efficient invertible neural networksJournal of Open Source SoftwareS. C. Van De Leemput, J. Teuwen, B. Van Ginneken, R. Manniesing, 2019, 4;(39):1576
Abstract
Loading... -
Vendor-independent soft tissue lesion detection using weakly supervised and unsupervised adversarial domain adaptationMedical Imaging 2019: Computer-Aided DiagnosisJ. Teuwen, N. Moriakov, R. Mann, E. Marchiori, J. Van Vugt, A. Gubern-Mérida, 2019
Abstract
Loading... -
Deep learning framework for digital breast tomosynthesis reconstructionMedical Imaging 2019: Physics of Medical ImagingN. Moriakov, K. Michielsen, J. Adler, R. Mann, I. Sechopoulos, J. Teuwen, 2019
Abstract
Loading...
2018
2017
-
New reconstruction algorithm for digital breast tomosynthesis: better image quality for humans and computersActa RadiologicaA. Rodriguez-Ruiz, J. Teuwen, S. Vreemann, R. W. Bouwman, R. E. Van Engen, N. Karssemeijer, R. M. Mann, A. Gubern-Merida, I. Sechopoulos, 2017, 59;(9):1051-1059
Abstract
Loading...