AI, Explanation, and Black Boxes


The work was published in the Explainable AI (XAI) special issue of the European Journal of Radiology.

Artificial intelligence (AI) is infiltrating nearly all fields of science by storm. One notorious property that AI algorithms bring is their so-called black box character. In particular, they are said to be inherently unexplainable algorithms. Of course, such characteristics would pose a problem for the medical world, including radiology. The patient journey is filled with explanations along the way, from diagnoses to treatment, follow-up, and more. If we were to replace part of these steps with non-explanatory algorithms, we could lose grip on vital aspects such as finding mistakes, patient trust, and even the creation of new knowledge.

In this article, we argue that, even for the darkest of black boxes, there is hope of understanding them. In particular, we compare the situation of understanding black box models to that of understanding the laws of nature in physics. In the case of physics, we are given a ‘black box’ law of nature, about which there is no upfront explanation. However, as current physical theories show, we can learn plenty about them. During this discussion, we present the process by which we make such explanations and the human role therein, keeping a solid focus on radiological AI situations. We will outline the AI developers’ roles in this process, but also the critical role fulfilled by the practitioners, the radiologists, in providing a healthy system of continuous improvement of AI models. Furthermore, we explore the role of the explainable AI (XAI) research program in the broader context we describe.