Publications

2024

  1. Artificial Intelligence-Enhanced Breast MRI
    Investigative Radiology
    R. Lo Gullo, E. Marcus, J. Huayanay, S. Eskreis-Winkler, S. Thakur, J. Teuwen, K. Pinker, 2024
    Abstract
    Loading...
  2. Artificial intelligence and explanation: How, why, and when to explain black boxes
    European Journal of Radiology
    E. Marcus, J. Teuwen, 2024
    Abstract
    Loading...
  3. Nodule detection and generation on chest X-rays: NODE21 Challenge
    IEEE Transactions on Medical Imaging
    E. Sogancioglu, B. Van Ginneken, F. Behrendt, M. Bengs, A. Schlaefer, M. Radu, D. Xu, K. Sheng, F. Scalzo, E. Marcus, S. Papa, J. Teuwen, E. T. Scholten, S. Schalekamp, N. Hendrix, C. Jacobs, W. Hendrix, C. I. Sánchez, K. Murphy, 2024
    Abstract
    Loading...
  4. AI Applications to Breast MRI: Today and Tomorrow.
    Journal of magnetic resonance imaging: JMRI
    R. Lo Gullo, J. Brunekreef, E. Marcus, L. K. Han, S. Eskreis-Winkler, S. B. Thakur, R. Mann, K. Groot Lipman, J. Teuwen, K. Pinker, 2024
    Abstract
    Loading...
  5. Task-driven wavelets using constrained empirical risk minimization
    Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
    E. Marcus, R. Sheombarsing, J. Sonke, J. Teuwen, 2024
    Abstract
    Loading...
  6. Kandinsky conformal prediction: Efficient calibration of image segmentation algorithms
    Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
    J. Brunekreef, E. Marcus, R. Sheombarsing, J. Sonke, J. Teuwen, 2024
    Abstract
    Loading...
  7. Nodule Detection and Generation on Chest X-Rays: NODE21 Challenge.
    IEEE transactions on medical imaging
    E. Sogancioglu, B. v. Ginneken, F. Behrendt, M. Bengs, A. Schlaefer, M. Radu, D. Xu, K. Sheng, F. Scalzo, E. Marcus, S. Papa, J. Teuwen, E. T. Scholten, S. Schalekamp, N. Hendrix, C. Jacobs, W. Hendrix, C. I. Sanchez, K. Murphy, 2024, 43;(8):2839-2853
    Abstract
    Loading...
  8. Ordinal Learning: Longitudinal Attention Alignment Model for Predicting Time to Future Breast Cancer Events from Mammograms
    Lecture Notes in Computer Science
    X. Wang, T. Tan, Y. Gao, E. Marcus, L. Han, A. Portaluri, T. Zhang, C. Lu, X. Liang, R. Beets-Tan, J. Teuwen, R. Mann, 2024
    Abstract
    Loading...
  9. On retrospective k-space subsampling schemes for deep MRI reconstruction
    Magnetic Resonance Imaging
    G. Yiasemis, C. I. Sánchez, J. Sonke, J. Teuwen, 2024
    Abstract
    Loading...
  10. Image‐based multiplex immune profiling of cancer tissues: translational implications. A report of the International Immuno‐oncology Biomarker Working Group on Breast Cancer
    The Journal of Pathology
    C. A. Jahangir, D. B. Page, G. Broeckx, C. A. Gonzalez, C. Burke, C. Murphy, J. S. Reis‐Filho, A. Ly, P. W. Harms, R. R. Gupta, M. Vieth, A. I. Hida, M. Kahila, Z. Kos, P. J. Van Diest, S. Verbandt, J. Thagaard, R. Khiroya, K. Abduljabbar, G. Acosta Haab, B. Acs, S. Adams, J. S. Almeida, I. Alvarado‐Cabrero, F. Azmoudeh‐Ardalan, S. Badve, N. B. Baharun, E. R. Bellolio, V. Bheemaraju, K. R. Blenman, L. Botinelly Mendonça Fujimoto, O. Burgues, A. Chardas, M. C. U. Cheang, F. Ciompi, L. A. Cooper, A. Coosemans, G. Corredor, F. L. Dantas Portela, F. Deman, S. Demaria, S. N. Dudgeon, M. Elghazawy, C. Fernandez‐Martín, S. Fineberg, S. B. Fox, J. M. Giltnane, S. Gnjatic, P. I. Gonzalez‐Ericsson, A. Grigoriadis, N. Halama, M. G. Hanna, A. Harbhajanka, S. N. Hart, J. Hartman, S. Hewitt, H. M. Horlings, Z. Husain, S. Irshad, E. A. Janssen, T. R. Kataoka, K. Kawaguchi, A. I. Khramtsov, U. Kiraz, P. Kirtani, L. L. Kodach, K. Korski, G. Akturk, E. Scott, A. Kovács, A. Lænkholm, C. Lang‐Schwarz, D. Larsimont, J. K. Lennerz, M. Lerousseau, X. Li, A. Madabhushi, S. K. Maley, V. Manur Narasimhamurthy, D. K. Marks, E. S. Mcdonald, R. Mehrotra, S. Michiels, D. Kharidehal, F. U. A. A. Minhas, S. Mittal, D. A. Moore, S. Mushtaq, H. Nighat, T. Papathomas, F. Penault‐Llorca, R. D. Perera, C. J. Pinard, J. C. Pinto‐Cardenas, G. Pruneri, L. Pusztai, N. M. Rajpoot, B. L. Rapoport, T. T. Rau, J. M. Ribeiro, D. Rimm, A. Vincent‐Salomon, J. Saltz, S. Sayed, E. Hytopoulos, S. Mahon, K. P. Siziopikou, C. Sotiriou, A. Stenzinger, M. A. Sughayer, D. Sur, F. Symmans, S. Tanaka, T. Taxter, S. Tejpar, J. Teuwen, E. A. Thompson, T. Tramm, W. T. Tran, J. Van Der Laak, G. E. Verghese, G. Viale, N. Wahab, T. Walter, Y. Waumans, H. Y. Wen, W. Yang, Y. Yuan, J. Bartlett, S. Loibl, C. Denkert, P. Savas, S. Loi, E. Specht Stovgaard, R. Salgado, W. M. Gallagher, A. Rahman, 2024
    Abstract
    Loading...
  11. To deform or not: treatment-aware longitudinal registration for breast DCE-MRI during neoadjuvant chemotherapy via unsupervised keypoints detection
    L. Han, T. Tan, T. Zhang, Y. Gao, X. Wang, V. Longo, S. Ventura-Díaz, A. D'Angelo, J. Teuwen, R. Mann, 2024
    Abstract
    Loading...
  12. Equivariant Multiscale Learned Invertible Reconstruction for Cone Beam CT
    N. Moriakov, J. Sonke, J. Teuwen, 2024
    Abstract
    Loading...
  13. Deep Cardiac MRI Reconstruction with ADMM
    Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers
    G. Yiasemis, N. Moriakov, J. Sonke, J. Teuwen, 2024
    Abstract
    Loading...
  14. IMPORTANT-Net: Integrated MRI multi-parametric increment fusion generator with attention network for synthesizing absent data
    Information Fusion
    T. Zhang, T. Tan, L. Han, X. Wang, Y. Gao, J. Van Dijk, A. Portaluri, A. Gonzalez-Huete, A. D’Angelo, C. Lu, J. Teuwen, R. Beets-Tan, Y. Sun, R. Mann, 2024, 108
    Abstract
    Loading...
  15. Optimizing CycleGAN design for CBCT-to-CT translation: insights into 2D vs 3D modeling, patch size, and the need for tailored evaluation metrics
    Medical Imaging 2024: Image Processing
    I. Hadzic, S. Pai, V. Trier Taasti, D. Bontempi, I. Zhovannik, R. Canters, J. J. Sonke, A. Dekker, J. Teuwen, A. Traverso, 2024
    Abstract
    Loading...
  16. The state-of-the-art in Cardiac MRI Reconstruction: Results of the CMRxRecon Challenge in MICCAI 2023
    J. Lyu, C. Qin, S. Wang, F. Wang, Y. Li, Z. Wang, K. Guo, C. Ouyang, M. Tänzer, M. Liu, L. Sun, M. Sun, Q. Li, Z. Shi, S. Hua, H. Li, Z. Chen, Z. Zhang, B. Xin, D. N. Metaxas, G. Yiasemis, J. Teuwen, L. Zhang, W. Chen, Y. Pang, X. Liu, A. Razumov, D. V. Dylov, Q. Dou, K. Yan, Y. Xue, Y. Du, J. Dietlmeier, C. Garcia-Cabrera, Z. A. Hemidi, N. Vogt, Z. Xu, Y. Zhang, Y. Chu, W. Chen, W. Bai, X. Zhuang, J. Qin, L. Wu, G. Yang, X. Qu, H. Wang, C. Wang, 2024
    Abstract
    Loading...
  17. Application of deep learning on mammographies to discriminate between low and high-risk DCIS for patient participation in active surveillance trials.
    Cancer imaging: the official publication of the International Cancer Imaging Society
    S. Alaeikhanehshir, M. M. Voets, F. H. van Duijnhoven, E. H. Lips, E. J. Groen, M. C. J. van Oirsouw, S. E. Hwang, J. Y. Lo, J. Wesseling, R. M. Mann, J. Teuwen, 2024, 24;(1):48
    Abstract
    Loading...
  18. Abstract 4951: Integrative multi-omic machine learning model predicts neoadjuvant immunotherapy response using molecular data and deep learning-derived features from digital pathology
    Cancer Research
    L. V. Leek, V. Botha, V. A. Baxi, J. Teuwen, H. M. Horlings, S. D. Chasalow, J. V. D. Haar, L. F. Wessels, A. Debroy, E. E. Voest, 2024, 84;(6_Supplement):4951-4951
    Abstract
    Loading...
  19. End-to-end Adaptive Dynamic Subsampling and Reconstruction for Cardiac MRI
    G. Yiasemis, J. Sonke, J. Teuwen, 2024
    Abstract
    Loading...
  20. Deep learning-based low-dose CT simulator for non-linear reconstruction methods.
    Medical physics
    S. A. M. Tunissen, N. Moriakov, M. Mikerov, E. J. Smit, I. Sechopoulos, J. Teuwen, 2024
    Abstract
    Loading...
  21. Artificial intelligence
    Cancer Cell
    M. Gerstung, D. Liu, M. Ghassemi, J. Zou, D. Chowell, J. Teuwen, F. Mahmood, J. N. Kather, 2024, 42;(6):915-918
    Abstract
    Loading...
  22. Improving lesion volume measurements on digital mammograms
    Medical Image Analysis
    N. Moriakov, J. Peters, R. Mann, N. Karssemeijer, J. Van Dijck, M. Broeders, J. Teuwen, 2024
    Abstract
    Loading...
  23. AI-enhanced Mammography With Digital Breast Tomosynthesis for Breast Cancer Detection: Clinical Value and Comparison With Human Performance
    Radiology: Imaging Cancer
    D. Resch, R. Lo Gullo, J. Teuwen, F. Semturs, J. Hummel, A. Resch, K. Pinker, 2024, 6;(4)
    Abstract
    Loading...
  24. Enhancing the reliability of deep learning-based head and neck tumour segmentation using uncertainty estimation with multi-modal images.
    Physics in medicine and biology
    J. Ren, J. Teuwen, J. Nijkamp, M. E. Rasmussen, Z. Gouw, J. G. Eriksen, J. Sonke, S. S. Korreman, 2024
    Abstract
    Loading...
  25. Improving Neoadjuvant Therapy Response Prediction by Integrating Longitudinal Mammogram Generation with Cross-Modal Radiological Reports: A Vision-Language Alignment-Guided Model
    Lecture Notes in Computer Science
    Y. Gao, H. Zhou, X. Wang, T. Zhang, L. Han, C. Lu, X. Liang, J. Teuwen, R. Beets-Tan, T. Tan, R. Mann, 2024
    Abstract
    Loading...
  26. Enhancing the reliability of deep learning-based head and neck tumour segmentation using uncertainty estimation with multi-modal images
    Physics in Medicine & Biology
    J. Ren, J. Teuwen, J. Nijkamp, M. Rasmussen, Z. Gouw, J. Grau Eriksen, J. Sonke, S. Korreman, 2024, 69;(16):165018
    Abstract
    Loading...
  27. Improving Rectal Tumor Segmentation with Anomaly Fusion Derived from Anatomical Inpainting: A Multicenter Study
    L. Cai, M. A. Abdelatty, L. Han, D. Lambregts, J. Van Griethuysen, E. Pooch, R. G. Beets-Tan, S. Benson, J. Brunekreef, J. Teuwen, 2024
    Abstract
    Loading...
  28. Deep learning‐based low‐dose CT simulator for non‐linear reconstruction methods
    Medical Physics
    S. A. M. Tunissen, N. Moriakov, M. Mikerov, E. J. Smit, I. Sechopoulos, J. Teuwen, 2024, 51;(9):6046-6060
    Abstract
    Loading...
  29. Deep Multi-contrast Cardiac MRI Reconstruction via vSHARP with Auxiliary Refinement Network
    G. Yiasemis, N. Moriakov, J. Sonke, J. Teuwen, 2024
    Abstract
    Loading...
  30. An automated deep learning pipeline for EMVI classification and response prediction of rectal cancer using baseline MRI: a multi-centre study
    npj Precision Oncology
    L. Cai, D. M. J. Lambregts, G. L. Beets, M. Mass, E. H. P. Pooch, C. Guérendel, R. G. H. Beets-Tan, S. Benson, 2024, 8;(1)
    Abstract
    Loading...
  31. Generalizability, robustness, and correction bias of segmentations of thoracic organs at risk in CT images
    European Radiology
    C. Guérendel, L. Petrychenko, K. Chupetlovska, Z. Bodalal, R. G. H. Beets-Tan, S. Benson, 2024
    Abstract
    Loading...
  32. Diagnostic performance of ADC and ADCratio in MRI-based prostate cancer assessment: A systematic review and meta-analysis
    European Radiology
    G. Agrotis, E. Pooch, M. Abdelatty, S. Benson, A. Vassiou, M. Vlychou, R. G. H. Beets-Tan, I. G. Schoots, 2024
    Abstract
    Loading...

2023

  1. STAPLER: Efficient learning of TCR-peptide specificity prediction from full-length TCR-peptide data
    B. P. Y. Kwee, M. Messemaker, E. Marcus, G. Oliveira, W. Scheper, C. J. Wu, J. Teuwen, T. N. Schumacher, 2023
    Abstract
    Loading...
  2. Predicting up to 10 year breast cancer risk using longitudinal mammographic screening history
    X. Wang, T. Tan, Y. Gao, R. Su, T. Zhang, L. Han, J. Teuwen, A. D’Angelo, C. A. Drukker, M. K. Schmidt, R. Beets-Tan, N. Karssemeijer, R. Mann, 2023
    Abstract
    Loading...
  3. Visualize what you learn: a well-explainable joint-learning framework based on multi-view mammograms and associated reports
    Y. Gao, H. Zhou, X. Wang, T. Zhang, R. Tan, L. Han, L. Estacio, A. D’Angelo, J. Teuwen, R. Mann, T. Tan, 2023
    Abstract
    Loading...
  4. RadioLOGIC, a healthcare model for processing electronic health records and decision-making in breast disease
    Cell Reports Medicine
    T. Zhang, T. Tan, X. Wang, Y. Gao, L. Han, L. Balkenende, A. D’Angelo, L. Bao, H. M. Horlings, J. Teuwen, R. G. Beets-Tan, R. M. Mann, 2023
    Abstract
    Loading...
  5. Spatial analyses of immune cell infiltration in cancer: current methods and future directions. A report of the International Immuno‐Oncology Biomarker Working Group on Breast Cancer
    The Journal of Pathology
    D. B. Page, G. Broeckx, C. A. Jahangir, S. Verbandt, R. R. Gupta, J. Thagaard, R. Khiroya, Z. Kos, K. Abduljabbar, G. Acosta Haab, B. Acs, J. S. Almeida, I. Alvarado‐Cabrero, F. Azmoudeh‐Ardalan, S. Badve, N. B. Baharun, E. R. Bellolio, V. Bheemaraju, K. R. Blenman, L. Botinelly Mendonça Fujimoto, O. Burgues, M. C. U. Cheang, F. Ciompi, L. A. Cooper, A. Coosemans, G. Corredor, F. L. Dantas Portela, F. Deman, S. Demaria, S. N. Dudgeon, M. Elghazawy, S. Ely, C. Fernandez‐Martín, S. Fineberg, S. B. Fox, W. M. Gallagher, J. M. Giltnane, S. Gnjatic, P. I. Gonzalez‐Ericsson, A. Grigoriadis, N. Halama, M. G. Hanna, A. Harbhajanka, A. Hardas, S. N. Hart, J. Hartman, S. Hewitt, A. I. Hida, H. M. Horlings, Z. Husain, E. Hytopoulos, S. Irshad, E. A. Janssen, M. Kahila, T. R. Kataoka, K. Kawaguchi, D. Kharidehal, A. I. Khramtsov, U. Kiraz, P. Kirtani, L. L. Kodach, K. Korski, A. Kovács, A. Laenkholm, C. Lang‐Schwarz, D. Larsimont, J. K. Lennerz, M. Lerousseau, X. Li, A. Ly, A. Madabhushi, S. K. Maley, V. Manur Narasimhamurthy, D. K. Marks, E. S. Mcdonald, R. Mehrotra, S. Michiels, F. U. A. A. Minhas, S. Mittal, D. A. Moore, S. Mushtaq, H. Nighat, T. Papathomas, F. Penault‐Llorca, R. D. Perera, C. J. Pinard, J. C. Pinto‐Cardenas, G. Pruneri, L. Pusztai, A. Rahman, N. M. Rajpoot, B. L. Rapoport, T. T. Rau, J. S. Reis‐Filho, J. M. Ribeiro, D. Rimm, A. Salomon, M. Salto‐Tellez, J. Saltz, S. Sayed, K. P. Siziopikou, C. Sotiriou, A. Stenzinger, M. A. Sughayer, D. Sur, F. Symmans, S. Tanaka, T. Taxter, S. Tejpar, J. Teuwen, E. A. Thompson, T. Tramm, W. T. Tran, J. Van Der Laak, P. J. Van Diest, G. E. Verghese, G. Viale, M. Vieth, N. Wahab, T. Walter, Y. Waumans, H. Y. Wen, W. Yang, Y. Yuan, S. Adams, J. M. S. Bartlett, S. Loibl, C. Denkert, P. Savas, S. Loi, R. Salgado, E. Specht Stovgaard, G. Akturk, N. Bouchmaa, 2023
    Abstract
    Loading...
  6. Pitfalls in machine learning‐based assessment of tumor‐infiltrating lymphocytes in breast cancer: A report of the International Immuno‐Oncology Biomarker Working Group on Breast Cancer
    The Journal of Pathology
    J. Thagaard, G. Broeckx, D. B. Page, C. A. Jahangir, S. Verbandt, Z. Kos, R. Gupta, R. Khiroya, K. Abduljabbar, G. Acosta Haab, B. Acs, G. Akturk, J. S. Almeida, I. Alvarado‐Cabrero, M. Amgad, F. Azmoudeh‐Ardalan, S. Badve, N. B. Baharun, E. Balslev, E. R. Bellolio, V. Bheemaraju, K. R. Blenman, L. Botinelly Mendonça Fujimoto, N. Bouchmaa, O. Burgues, A. Chardas, M. Chon U Cheang, F. Ciompi, L. A. Cooper, A. Coosemans, G. Corredor, A. B. Dahl, F. L. Dantas Portela, F. Deman, S. Demaria, J. Doré Hansen, S. N. Dudgeon, T. Ebstrup, M. Elghazawy, C. Fernandez‐Martín, S. B. Fox, W. M. Gallagher, J. M. Giltnane, S. Gnjatic, P. I. Gonzalez‐Ericsson, A. Grigoriadis, N. Halama, M. G. Hanna, A. Harbhajanka, S. N. Hart, J. Hartman, S. Hauberg, S. Hewitt, A. I. Hida, H. M. Horlings, Z. Husain, E. Hytopoulos, S. Irshad, E. A. Janssen, M. Kahila, T. R. Kataoka, K. Kawaguchi, D. Kharidehal, A. I. Khramtsov, U. Kiraz, P. Kirtani, L. L. Kodach, K. Korski, A. Kovács, A. Laenkholm, C. Lang‐Schwarz, D. Larsimont, J. K. Lennerz, M. Lerousseau, X. Li, A. Ly, A. Madabhushi, S. K. Maley, V. Manur Narasimhamurthy, D. K. Marks, E. S. Mcdonald, R. Mehrotra, S. Michiels, F. U. A. A. Minhas, S. Mittal, D. A. Moore, S. Mushtaq, H. Nighat, T. Papathomas, F. Penault‐Llorca, R. D. Perera, C. J. Pinard, J. C. Pinto‐Cardenas, G. Pruneri, L. Pusztai, A. Rahman, N. M. Rajpoot, B. L. Rapoport, T. T. Rau, J. S. Reis‐Filho, J. M. Ribeiro, D. Rimm, A. Roslind, A. Vincent‐Salomon, M. Salto‐Tellez, J. Saltz, S. Sayed, E. Scott, K. P. Siziopikou, C. Sotiriou, A. Stenzinger, M. A. Sughayer, D. Sur, S. Fineberg, F. Symmans, S. Tanaka, T. Taxter, S. Tejpar, J. Teuwen, E. A. Thompson, T. Tramm, W. T. Tran, J. Van Der Laak, P. J. Van Diest, G. E. Verghese, G. Viale, M. Vieth, N. Wahab, T. Walter, Y. Waumans, H. Y. Wen, W. Yang, Y. Yuan, R. M. Zin, S. Adams, J. Bartlett, S. Loibl, C. Denkert, P. Savas, S. Loi, R. Salgado, E. Specht Stovgaard, 2023, 260;(5):498-513
    Abstract
    Loading...
  7. Development, validation, and simplification of a scanner‐specific CT simulator
    Medical Physics
    S. A. M. Tunissen, L. J. Oostveen, N. Moriakov, J. Teuwen, K. Michielsen, E. J. Smit, I. Sechopoulos, 2023
    Abstract
    Loading...
  8. vSHARP: variable Splitting Half-quadratic ADMM algorithm for Reconstruction of inverse-Problems
    G. Yiasemis, N. Moriakov, J. Sonke, J. Teuwen, 2023
    Abstract
    Loading...
  9. Synthesis of Contrast-Enhanced Breast MRI Using T1- and Multi-b-Value DWI-Based Hierarchical Fusion Network with Attention Mechanism
    Lecture Notes in Computer Science
    T. Zhang, L. Han, A. D’Angelo, X. Wang, Y. Gao, C. Lu, J. Teuwen, R. Beets-Tan, T. Tan, R. Mann, 2023
    Abstract
    Loading...
  10. Beyond the AJR: A Breakthrough in the Use of Artificial Intelligence for Mammography in Screening for Breast Cancer
    American Journal of Roentgenology
    R. M. Mann, J. Teuwen, 2023
    Abstract
    Loading...
  11. End‐to‐end memory‐efficient reconstruction for cone beam CT
    Medical Physics
    N. Moriakov, J. Sonke, J. Teuwen, 2023, 12;(50):7579-7593
    Abstract
    Loading...
  12. JSSL: Joint Supervised and Self-supervised Learning for MRI Reconstruction
    G. Yiasemis, N. Moriakov, C. I. Sánchez, J. Sonke, J. Teuwen, 2023
    Abstract
    Loading...
  13. Synthesis-based imaging-differentiation representation learning for multi-sequence 3D/4D MRI
    Medical Image Analysis
    L. Han, T. Tan, T. Zhang, Y. Huang, X. Wang, Y. Gao, J. Teuwen, R. Mann, 2023
    Abstract
    Loading...
  14. Clinicopathological and prognostic value of calcification morphology descriptors in ductal carcinoma in situ of the breast: a systematic review and meta-analysis
    Insights into Imaging
    M. M. Van Leeuwen, S. Doyle, A. W. Van Den Belt–Dusebout, S. Van Der Mierden, C. E. Loo, R. M. Mann, J. Teuwen, J. Wesseling, 2023, 14;(1)
    Abstract
    Loading...
  15. Deep learning-based breast region segmentation in raw and processed digital mammograms: generalization across views and vendors
    Journal of Medical Imaging
    S. D. Verboom, M. Caballo, J. Peters, J. Gommers, D. Van Den Oever, M. J. M. Broeders, J. Teuwen, I. Sechopoulos, 2023, 11;(01)
    Abstract
    Loading...
  16. Nature of spatial universes in 3D Lorentzian quantum gravity
    Physical Review D
    J. Brunekreef, R. Loll, 2023, 107;(2)
    Abstract
    Loading...
  17. Joint machine learning and analytic track reconstruction for X-ray polarimetry with gas pixel detectors
    Astronomy & Astrophysics
    N. Cibrario, M. Negro, N. Moriakov, R. Bonino, L. Baldini, N. Di Lalla, L. Latronico, S. Maldera, A. Manfreda, N. Omodei, C. Sgró, S. Tugliani, 2023, 674
    Abstract
    Loading...
  18. IL-5-producing CD4+ T cells and eosinophils cooperate to enhance response to immune checkpoint blockade in breast cancer
    Cancer Cell
    O. S. Blomberg, L. Spagnuolo, H. Garner, L. Voorwerk, O. I. Isaeva, E. Van Dyk, N. Bakker, M. Chalabi, C. Klaver, M. Duijst, K. Kersten, M. Brüggemann, D. Pastoors, C. Hau, K. Vrijland, E. A. Raeven, D. Kaldenbach, K. Kos, I. S. Afonina, P. Kaptein, L. Hoes, W. S. Theelen, P. Baas, E. E. Voest, R. Beyaert, D. S. Thommen, L. F. Wessels, K. E. De Visser, M. Kok, 2023, 41;(1):106-123.e10
    Abstract
    Loading...