News

Latest updates from the AI for Oncology Lab.

Image for Retrospective k-space Subsampling schemes For Deep MRI Reconstruction

Retrospective k-space Subsampling schemes For Deep MRI Reconstruction

In our new publication, we investigate and compare various retrospective k-space subsampling patterns and their effect on the quality of DL-based reconstructions. Our findings suggest that non-rectilinear and non-Cartesian subsampling patterns may be more suitable for DL-based reconstructions.

Image for New A100 80GB server installed

New A100 80GB server installed

Another compute node has been installed in the AI for Oncology Cluster kosmos. The server, nicknamed euctemon, consists of 8xA100 80G, dual CPU and 1TB of memory. Euctemon joins the slurm cluster which now consists out of 16xA100 80GB, 16xA6000 48GB and 4x RTX2080Ti, and 1 PB NAS.

Image for Application of Deep Learning in Breast Cancer Imaging

Application of Deep Learning in Breast Cancer Imaging

Luuk Balkenende has published the first paper of his PhD in Seminars in Nuclear Medicine on "Applications of Deep Learning in Breast Cancer Imaging" where he reviews the current usages of deep learning for mammography, ultrasound and breast MRI.

Image for Recurrent Variational Network presented at CVPR

Recurrent Variational Network presented at CVPR

Our paper "Recurrent Variational Network: A Deep Learning Inverse Problem Solver applied to the task of Accelerated MRI Reconstruction" has been accepted for publication at CVPR 2022! CVPR is the top ranked Computer Science conference with leading h5-index and impact score! Our work proposes a novel DL Inverse Problem solver, the RecurrentVarNet, employed and evaluated in the essential task of Accelerated MRI Reconstruction achieving SOTA results!